Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Integrated InGaAs-InP quantum wire laser-modulators for 1.55-μm applications

Identifieur interne : 00A755 ( Main/Repository ); précédent : 00A754; suivant : 00A756

Integrated InGaAs-InP quantum wire laser-modulators for 1.55-μm applications

Auteurs : RBID : Pascal:04-0133010

Descripteurs français

English descriptors

Abstract

Quantum wire lasers and modulators offer superior performance over their quantum well counterparts. We present simulations of an integrated InGaAs-InP quantum wire laser-modulator structure operating at 1.55 μm. In the case of quantum wire lasers, we have computed the optical gain as a function of current density for wires having widths ranging between 60 and 100 Å. For example, the threshold current density of 61 A/cm2 is computed for a wire with a width of 80 Å. In the case of quantum wire modulators, we compute the changes in the absorption coefficient and index of refraction due to an external electric field to implement electroabsorptive and electrorefractive optical modulators. For example, the absorption coefficient changes (Δα/α) by 450% when an applied electric field changes from 30 to 60 kV/cm for an 80 Å quantum wire. The corresponding change of refractive index is about 11%. A structure integrating an edge-emitting laser with an in-line type electroabsorptive or electrorefractive modulator is presented. The quantum wires are designed to operate the laser at a wavelength that corresponds to the Stark effect tuning of the modulator. We can maximize the changes in electroabsorptive and electrorefractive modulators by choosing the right combination of wire dimensions, operating wavelengths, and electric fields. © 2004 Society of Photo-Optical Instrumentation Engineers.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0133010

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Integrated InGaAs-InP quantum wire laser-modulators for 1.55-μm applications</title>
<author>
<name sortKey="Huang, Wenli" uniqKey="Huang W">Wenli Huang</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>United States Military Academy, Photonics Research Center, Department of Electrical Engineering and Computer Science, West Point, New York 10996</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>United States Military Academy, Photonics Research Center, Department of Electrical Engineering and Computer Science, West Point</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>University of Connecticut, Department of Electrical and Computer Engineering, Storrs, Connecticut 06269-1157</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Connecticut</region>
</placeName>
<wicri:cityArea>University of Connecticut, Department of Electrical and Computer Engineering, Storrs</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Jain, Faquir" uniqKey="Jain F">Faquir Jain</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>United States Military Academy, Photonics Research Center, Department of Electrical Engineering and Computer Science, West Point, New York 10996</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>United States Military Academy, Photonics Research Center, Department of Electrical Engineering and Computer Science, West Point</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">04-0133010</idno>
<date when="2004-03">2004-03</date>
<idno type="stanalyst">PASCAL 04-0133010 AIP</idno>
<idno type="RBID">Pascal:04-0133010</idno>
<idno type="wicri:Area/Main/Corpus">00BC90</idno>
<idno type="wicri:Area/Main/Repository">00A755</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0091-3286</idno>
<title level="j" type="abbreviated">Opt. eng.</title>
<title level="j" type="main">Optical engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption coefficients</term>
<term>Current density</term>
<term>Electro-optical modulation</term>
<term>Electroabsorption</term>
<term>Gallium arsenides</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Instrumentation</term>
<term>Integrated optics</term>
<term>Quantum confined Stark effect</term>
<term>Quantum well lasers</term>
<term>Refractive index</term>
<term>Semiconductor quantum wires</term>
<term>Theoretical study</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>4255P</term>
<term>7866F</term>
<term>7867L</term>
<term>8107S</term>
<term>8535B</term>
<term>4260B</term>
<term>7820J</term>
<term>7820C</term>
<term>7867D</term>
<term>4279H</term>
<term>Appareillage</term>
<term>Etude théorique</term>
<term>Semiconducteur III-V</term>
<term>Optique intégrée</term>
<term>Indium composé</term>
<term>Gallium arséniure</term>
<term>Fil quantique semiconducteur</term>
<term>Laser puits quantique</term>
<term>Modulation électrooptique</term>
<term>Densité courant</term>
<term>Effet Stark confinement quantique</term>
<term>Coefficient absorption</term>
<term>Indice réfraction</term>
<term>Electroabsorption</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Quantum wire lasers and modulators offer superior performance over their quantum well counterparts. We present simulations of an integrated InGaAs-InP quantum wire laser-modulator structure operating at 1.55 μm. In the case of quantum wire lasers, we have computed the optical gain as a function of current density for wires having widths ranging between 60 and 100 Å. For example, the threshold current density of 61 A/cm2 is computed for a wire with a width of 80 Å. In the case of quantum wire modulators, we compute the changes in the absorption coefficient and index of refraction due to an external electric field to implement electroabsorptive and electrorefractive optical modulators. For example, the absorption coefficient changes (Δα/α) by 450% when an applied electric field changes from 30 to 60 kV/cm for an 80 Å quantum wire. The corresponding change of refractive index is about 11%. A structure integrating an edge-emitting laser with an in-line type electroabsorptive or electrorefractive modulator is presented. The quantum wires are designed to operate the laser at a wavelength that corresponds to the Stark effect tuning of the modulator. We can maximize the changes in electroabsorptive and electrorefractive modulators by choosing the right combination of wire dimensions, operating wavelengths, and electric fields. © 2004 Society of Photo-Optical Instrumentation Engineers.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0091-3286</s0>
</fA01>
<fA02 i1="01">
<s0>OPEGAR</s0>
</fA02>
<fA03 i2="1">
<s0>Opt. eng.</s0>
</fA03>
<fA05>
<s2>43</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Integrated InGaAs-InP quantum wire laser-modulators for 1.55-μm applications</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HUANG (Wenli)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JAIN (Faquir)</s1>
</fA11>
<fA14 i1="01">
<s1>United States Military Academy, Photonics Research Center, Department of Electrical Engineering and Computer Science, West Point, New York 10996</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>University of Connecticut, Department of Electrical and Computer Engineering, Storrs, Connecticut 06269-1157</s1>
</fA14>
<fA20>
<s1>667-672</s1>
</fA20>
<fA21>
<s1>2004-03</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15166</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2004 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>04-0133010</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Optical engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Quantum wire lasers and modulators offer superior performance over their quantum well counterparts. We present simulations of an integrated InGaAs-InP quantum wire laser-modulator structure operating at 1.55 μm. In the case of quantum wire lasers, we have computed the optical gain as a function of current density for wires having widths ranging between 60 and 100 Å. For example, the threshold current density of 61 A/cm2 is computed for a wire with a width of 80 Å. In the case of quantum wire modulators, we compute the changes in the absorption coefficient and index of refraction due to an external electric field to implement electroabsorptive and electrorefractive optical modulators. For example, the absorption coefficient changes (Δα/α) by 450% when an applied electric field changes from 30 to 60 kV/cm for an 80 Å quantum wire. The corresponding change of refractive index is about 11%. A structure integrating an edge-emitting laser with an in-line type electroabsorptive or electrorefractive modulator is presented. The quantum wires are designed to operate the laser at a wavelength that corresponds to the Stark effect tuning of the modulator. We can maximize the changes in electroabsorptive and electrorefractive modulators by choosing the right combination of wire dimensions, operating wavelengths, and electric fields. © 2004 Society of Photo-Optical Instrumentation Engineers.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H66F</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H67L</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A07S</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B40B60B</s0>
</fC02>
<fC02 i1="07" i2="3">
<s0>001B70H20J</s0>
</fC02>
<fC02 i1="08" i2="3">
<s0>001B70H20C</s0>
</fC02>
<fC02 i1="09" i2="3">
<s0>001B70H67D</s0>
</fC02>
<fC02 i1="10" i2="3">
<s0>001B40B79H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>4255P</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7866F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7867L</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>8107S</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>8535B</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>4260B</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>7820J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>7820C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>7867D</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>4279H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Appareillage</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Instrumentation</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Etude théorique</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Theoretical study</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Optique intégrée</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Integrated optics</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Fil quantique semiconducteur</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Semiconductor quantum wires</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Laser puits quantique</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Quantum well lasers</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Modulation électrooptique</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Electro-optical modulation</s0>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Densité courant</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Current density</s0>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Effet Stark confinement quantique</s0>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Quantum confined Stark effect</s0>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Coefficient absorption</s0>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Absorption coefficients</s0>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Indice réfraction</s0>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Refractive index</s0>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Electroabsorption</s0>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Electroabsorption</s0>
</fC03>
<fN21>
<s1>082</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0411M000393</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00A755 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00A755 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:04-0133010
   |texte=   Integrated InGaAs-InP quantum wire laser-modulators for 1.55-μm applications
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024